3D Printers filament guide

3D Printers filament guide

3D Printers filament guide










The Basics

TPE, TPU, TPC (Flexible)
PC (Polycarbonate)

Exotic and Funky Types of 3D Printer Filament

Biodegradable (bioFila)

Professional Types of 3D Printer Filament

Carbon Fiber
Polypropylene (PP)
Acetal (POM)
PMMA (Acrylic)

3D Printers filament guide

3D Printers filament guide – Below you’ll find a documented section describing the different types of content suitable for your 3D Printer.

What is PLA?

In the realm of consumer 3D printing, polylactic acid (PLA) is king. Although it’s often compared to ABS – arguably the next in line to the throne – PLA is easily the most popular 3D printer filament type, and for good reason.

More Information

First and foremost, PLA is easy to print with. It has a lower printing temperature than ABS, and it doesn’t warp as easily, meaning it doesn’t require a heating bed (although it definitely helps). Another benefit of using PLA is that it doesn’t give off an offputting odor during printing (unlike ABS). It’s generally considered an odorless filament, but many have reported smelling sweet candy-like fumes depending on the type of PLA.

Another appealing aspect of PLA is that it’s available in a nearly endless abundance of colors and styles. As you’ll see in the exotics sections, many of these specialty filaments use PLA as the base material, such as those with conductive or glow-in-the-dark properties, or those infused with wood or metal.

Finally, as a biodegradable thermoplastic, PLA is more environmentally friendly than most types of 3D printer filament, being made from annually renewable resources such as corn starch or sugar cane.

3D Printer Filament Properties: PLA

  • Strength: High | Flexibility: Low | Durability: Medium
  • Difficulty to use: Low/li>
  • Print temperature: 180°C – 230°C
  • Print bed temperature: 20°C – 60°C (but not needed)
  • Shrinkage/warping: Minimal
  • Soluble: No
  • Food safety: Refer to manufacturer guidelines

When Should I Use PLA 3D Printer Filament?

In this case, the better question might be, When shouldn’t I use PLA? Compared to other types of 3D printer filament, PLA is brittle, so avoid using it when making items that might be bent, twisted, or dropped repeatedly, such as phone cases, high-wear toys, or tool handles.

You should also avoid using it with items that need to withstand higher temperatures, as PLA tends to deform around temperatures of 60°C or higher. For all other applications, PLA makes for a good overall choice in 3D printer filament.

Common prints include models, low-wear toys, prototype parts, and containers.

Recap of PLA 3D Printer Filament

  • Pros: Easy to print, wide variety of colors/styles, biodegradable
  • Cons: Brittle, lackluster mechanical properties


What is ABS?

Acrylonitrile butadiene styrene (ABS) typically ranks as the second most popular 3D printer filament, after PLA. But that just means it’s the second most commonly used. With respect to its material properties, ABS is actually moderately superior to PLA, despite being slightly more difficult to print with. It’s for this reason that ABS is found in many manufactured household and consumer goods, including LEGO bricks and bicycle helmets!

More Information

Products made of ABS boast high durability and a capacity to withstand high temperatures, but 3D printer enthusiasts should be mindful of the filament’s high printing temperature, tendency to warp during cooling, and intense, potentially hazardous fumes. Be sure to print with a heated bed and in a well-ventilated space (or with an enclosure).

3D Printer Filament Properties: ABS

  • Strength: High | Flexibility: Medium | Durability: High
  • Difficulty to use: Medium
  • Print temperature: 210°C – 250°C
  • Print bed temperature: 80°C – 110°C
  • Shrinkage/warping: Considerable
  • Soluble: In esters, ketones, and acetone
  • Food safety: Not food safe

When Should I Use ABS 3D Printer Filament?

ABS is tough – able to withstand high stress and temperature. It’s also moderately flexible, though their are certainly better options for that further down the list. Together these properties make ABS a good general-purpose 3D printer filament, but where it really shines is with items that are frequently handled, dropped, or heated. Examples include phone cases, high-wear toys, tool handles, automotive trim components, and electrical enclosures.

Recap of ABS 3D Printer Filament

  • Pros: High strength, high durability, resistant to high temperatures
  • Cons: Warps easily, hazardous fumes, requires high-temperature print nozzle


What is PETG?

Polyethylene terephthalate (PET) is the most commonly used plastic in the world. Best known as the polymer used in water bottles, it is also found in clothing fibers and food containers. While “raw” PET is rarely used in 3D printing, its variant PETG is an increasingly popular 3D printer filament.

Which is the Best?

Like any 3D printing filament material, there are a plethora of brands offering their own colors, blends and properties of PETG.

More Information

The ‘G’ in PETG stands for “glycol-modified”, and the result is a filament that is clearer, less brittle, and most importantly, easier to print with than its base form. For this reason, PETG is often considered a good middle ground between ABS and PLA, the two most commonly used types of 3D printer filament, as it is more flexible and durable than PLA and easier to print than ABS.

Three things 3D printer enthusiasts should keep in mind when using PETG:

  1. PETG is hygroscopic, meaning it absorbs moisture from the air. As this has a negative effect on the material, make sure to store the 3D printer filament in a cool, dry place.
  2. PETG is sticky when it’s being printed, making this 3D printer filament a poor choice for support structures, but good for layer adhesion. (Just be careful with the print bed!)
  3. Though not brittle, PETG scratches more easily than ABS.

Polyethylene coTrimethylene Terephthalate (PETT) is another PET variant. Slightly more rigid than PETG, this 3D printer filament is popular for being transparent.

3D Printer Filament Properties: PETG (PET, PETT)

  • Strength: High| Flexibility: Medium | Durability: High
  • Difficulty to use: Low
  • Print temperature: 220°C – 250°C
  • Print bed temperature: 50°C – 75°C
  • Shrinkage/warping: Minimal
  • Soluble: No
  • Food safety: Refer to manufacturer guidelines

When Should I Use PETG (PET, PETT) 3D Printer Filament?

PETG is a good all-rounder but stands out from many other types of 3D printer filament due to its flexibility, strength, and resistance to both high temperature and impact. This makes it an ideal 3D printer filament to use for functional objects which might experience sustained or sudden stress, such as mechanical parts, printer parts, and protective components.

Recap of PETG 3D Printer Filament

  • Pros: Flexible, durable, easy to print
  • Cons: Susceptible to moisture, surface scratches easily


What is TPE?

As the name implies, thermoplastic elastomers (TPE) are essentially plastics with rubber-like qualities, making them extremely flexible and durable. As such, TPE is commonly used to produce automotive parts, household appliances, and medical supplies.

More Information

In reality, TPE is a broad class of copolymers (and polymer mixtures), but it is nonetheless used to label many commercially available types of 3D printer filament. Soft and stretchable, these filaments can withstand the kind of physical punishment that neither ABS nor PLA can tolerate. On the other hand, printing is not always easy, as TPE can be difficult to extrude.

Thermoplastic polyurethane (TPU) is a particular variety of TPE, and is itself a popular 3D printer filament. Compared to generic TPE, TPU is slightly more rigid – making it easier to print. It’s also a little more durable and can better retain its elasticity in the cold.

Thermoplastic copolyester (TPC) is another variety of TPE, though not as commonly used as TPU. Similar in most respects to TPE, TPC’s main advantage is its higher resistance to chemical and UV exposure, as well heat (up to 150°C).

3D Printer Filament Properties: TPE, TPU, TPC (Flexible)

  • Strength: Medium | Flexibility: Very High| Durability: Very High
  • Difficulty to use: Medium (TPE, TPC); Low(TPU)
  • Print temperature: 210°C – 230°C
  • Print bed temperature: 30°C – 60°C (but not needed)
  • Shrinkage/warping: Minimal
  • Soluble: No
  • Food safety: Not food safe

When Should I Use TPE, TPU, or TPC 3D Printer Filament?

Use TPE or TPU when creating objects that need to take a lot of wear. If your 3D printed part will bend, stretch, or compress, these 3D printer filaments should be up for the task. Example prints might include toys, phone cases, or wearables (like wristbands). TPC can be used for similar applications, but does especially well in harsher environments, like the outdoors.

Recap of TPE/TPU/TPC 3D Printer Filament

  • Pros: Extremely flexible, perfect for parts that bend or compress
  • Cons: Difficult to print, requires tight filament path and slow print speed


What is Nylon?

Nylon, a popular family of synthetic polymers used in many industrial applications, is the heavyweight champion of the professional 3D printing world. Compared to most other types of 3D printer filament, it ranks as the number one contender when together considering strength, flexibility, and durability.

More Information

Another unique characteristic of this 3D printer filament is that you can dye it, either before or after the printing process. The negative side to this is that nylon, like PETG, is hygroscopic, meaning it absorbs moisture, so remember to store it in a cool, dry place to keep the filament in prime condition, ensuring better quality prints.

In general, many grades of nylon exist, but among the most common for use as 3D printer filament are 618 and 645.

3D Printer Filament Properties: Nylon

  • Strength: High | Flexibility: High | Durability: High
  • Difficulty to use: Medium
  • Print temperature: 240°C – 260°C
  • Print bed temperature: 70°C – 100°C
  • Shrinkage/warping: Considerable
  • Soluble: No
  • Food safety: Refer to manufacturer guidelines

When Should I Use Nylon 3D Printer Filament?

Taking advantage of nylon’s strength, flexibility, and durability, this type of 3D printer filament can be used to create tools, functional prototypes, or mechanical parts (like hinges, buckles, or gears).

Recap of Nylon 3D Printer Filament

  • Pros: High strength, high flexibility, high durability
  • Cons: Typically expensive, susceptible to moisture, requires high nozzle and print bed temperature


What is PC?

Polycarbonate (PC), in addition to being one of the strongest 3D printer filament presented in this list, is extremely durable and resistant to both physical impact and heat, able to withstand temperatures of up to 110°C. It’s also transparent, which explains its use in commercial items such as bulletproof glass, scuba masks, and electronic display screens.

More Information

Despite being featured in similar use cases, PC shouldn’t be confused with acrylic or plexiglass, which tend to shatter or crack under stress. Unlike these two materials, PC is moderately flexible (though not as much as nylon, for example), allowing it to bend until it eventually deforms.

PC 3D printer filament is hygroscopic, able to absorb water from the air, so remember to store it in a cool, dry place to ensure better quality prints.

3D Printer Filament Properties: PC (Polycarbonate)

  • Strength: Very High| Flexibility: Medium | Durability: Very High
  • Difficulty to use: Medium
  • Print temperature: 270°C – 310°C
  • Print bed temperature: 90°C – 110°C
  • Shrinkage/warping: Considerable
  • Soluble: No
  • Food safety: Not food safe

When Should I Use PC 3D Printer Filament?

Due to its physical properties, PC is an ideal 3D printer filament for parts that need to retain their strength, toughness, and shape in high-temperature environments, such as electrical, mechanical, or automotive components. You can also leverage its optical clarity for lighting projects, screens, and other applications that call for transparency.

Recap of PC 3D Printer Filament

  • Pros: Extremely strong, resistant to heat and physical impact
  • Cons: Susceptible to moisture, requires very high print temperature


What is Wood Filament?

Interested in printing objects that look and feel like wood? Well, you can! It’s not really wood of course – that wouldn’t make for a very good 3D printer filament – it’s PLA infused with wood fiber.

More Information

Many wood-PLA 3D printer filament blends exist on the market today. These include the more standard wood varieties, such Pine, Birch, Cedar, Ebony, and Willow, but the range also extends itself to less common types, like Bamboo, Cherry, Coconut, Cork, and Olive.

As with other types of 3D printer filament, there is a trade-off with using wood. In this case, aesthetic and tactile appeal comes at the cost of reduced flexibility and strength.

Be careful with the temperature at which you print wood, as too much heat can result in an almost burnt or caramelized appearance. On the other hand, the base appearance of your wooden creations can be greatly improved with a little post-print processing! Wood filament can also cause wear and tear to your 3D printer nozzle, so keep that in mind before using this material.

When Should I Use Wood Filament?

Wood is popular with items that are appreciated less for their functional capabilities, and more for their natural appearance. Consider using wood 3D printer filament when printing objects that are displayed on a desk, table, or shelf. Examples include bowls, figurines, and awards. One really creative application of wood as a 3D printer filament is in the creation of scale models, such as those used in architecture.

Recap of Wood Filament

  • Pros: Aesthetically striking, ideal for visual models
  • Cons: Lackluster mechanical properties, abrasive to print nozzle


What is Metal Filament?

Maybe you’re looking for a different type of aesthetic in your prints — something a little bulkier and shinier. Well, for that you can use metal. Like wood 3D printer filament, metal filament isn’t fully made from metal. It’s actually a mix of metal powder and either PLA or ABS. But that doesn’t stop the results from having the look and feel of metal.

Even the weight is metal-like, as blends tend to be several times denser than pure PLA or ABS.

More Information

Bronze, brass, copper, aluminum, and stainless steel are just a few of the varieties of metal 3D printer filaments that are commercially available. And if there’s a specific look you’re interested in, don’t be afraid to polish, weather, or tarnish your metal items after printing – a little post-processing can go a long way.

You may need to replace your nozzle a little sooner as a result of printing with metal, as the grains are somewhat abrasive, resulting in increased nozzle wear.

The most common 3D printer filament blends tend to be around 50% metal powder and 50% PLA or ABS, but blends also exist that are up to 85% metal. For more information on these filaments, and how to use them, take a look at our Complete Guide to Metal 3D Printing.

When Should I Use Metal Filament?

Metal can be used to print for aesthetics and for functionality. Figurines, models, toys, and tokens can all look great when 3D printed in metal. And as long as they don’t have to deal with too much stress, feel free to use metal 3D printer filament to create parts with purpose, like tools, grates, or finishing components.

Recap of Metal Filament

  • Pros: Provides metallic look, ideal for both aesthetic and functional models
  • Cons: Difficult to print, highly abrasive to print nozzle


What is Biodegradable Filament?

Biodegradable 3D printer filaments make up a unique category, as their most valuable characteristic does not lie in their physical natures. As most hobbyists can attest to, not every print turns out the way you want it to, and this results in having to throw away a ton of plastic. Biodegradable filaments seek to negate the environmental impact that plastic waste has on our planet.

More Information

As was mentioned earlier in this article, PLA is in fact a biodegradable filament, but others include two bears’ bioFila line and Biome3D, by Biome Bioplastics.

When Should I Use Biodegradable 3D Printer Filament?

Regardless of their primary reason for existing being environmentally friendly, biodegradable 3D printer filament types can still produce items of sound physical quality. Use them any time you don’t have specific requirements for strength, flexibility, or endurance. And if you really want to take advantage of the guilt-free printing biodegradable filaments offer, try using them in projects which require prototyping.

Recap of Biodegradable 3D Printer Filament

  • Pros: Environmentally-friendly
  • Cons: Lackluster mechanical properties, limited selection, tend to be expensive


What is Conductive Filament?

With so many strong, flexible, and durable types of 3D printer filament available, structural and mechanical projects are everywhere, it seems. Enter conductive 3D printer filaments — filament that does as its name implies: conduct electricity. Time for electrical and computer engineers to join the fun!

More Information

With the addition of conductive carbon particulates to PLA or ABS, it’s easy to actualize hobbyist projects by printing low-voltage electronic circuits. Just couple a conductive 3D printer filament with an ordinary PLA or ABS in a dual-extrusion machine.

When Should I Use Conductive 3D Printer Filament?

Even though this 3D printer filament type only supports low-voltage circuitry, the sky’s the limit with customized electronics projects. If you’re experimenting, try coupling a circuit board with LEDs, sensors, or even a Raspberry Pi! If you’re looking for something a little more specific, popular ideas include gaming controllers, digital keyboards, and trackpads.

Recap of Conductive 3D Printer Filament

  • Pros: Ideal for electronics projects
  • Cons: Limited selection


What is Glow-in-the-Dark Filament?

Glow-in-the-dark 3D printer filament – pretty self-explanatory. Leave your print in the light for a while, then flick the switch and behold that eerie green glow.

It doesn’t have to be green, of course. Other glow-in-the-dark filament colors include blue, red, pink, yellow, or orange. But green tends to be the most popular and replicate that classic style of glow…

More Information

So, how does it work? It all comes down to the phosphorescent materials mixed in with the PLA or ABS base. Thanks to these added materials, a glow-in-the-dark 3D printer filament is able to absorb and later emit photons, which are kind of like tiny particles of light. This is why your prints will only glow after being in the light – they have to store the energy before they can release it.

For best results, consider printing with thick walls and little infill. The thicker your walls, the stronger the glow!

When Should I Use Glow-in-the-Dark 3D Printer Filament?

Thinking about that eerie green glow, it almost doesn’t even seem necessary to suggest using a glow-in-the-dark 3D printer filament for Halloween projects, like jack-o’-lanterns or window decorations. Other examples of where these filaments really shine – er, glow – include wearables (think jewelry), toys, and figurines.

Recap of Glow-in-the-Dark 3D Printer Filament

  • Pros: Visually striking (I mean, it glows in the dark!)
  • Cons: Limited mechanical properties


What is Magnetic Filament?

Are metal and conductive prints not exciting enough for you? Okay then, how about magnetic prints? This exotic 3D printer filament, a cross between PLA or ABS and powdered iron, features a grainy, gunmetal finish, and of course, it sticks to magnets!

More Information

One thing to note: Despite the name, this 3D printer filament type is actually ferromagnetic, meaning that while it is attracted to magnetic fields, it has no fields of its own. In other words, the objects you print may stick to magnets, but they won’t actually be magnets.

When Should I Use Magnetic 3D Printer Filament?

Use this type of 3D printer filament whenever you want your prints to stick to something magnetic. Ornaments (especially for the fridge) are the most obvious example, but why not incorporate some magnetism into toys or tools?

Recap of Magnetic 3D Printer Filament

  • Pros: Sticks to magnets, visually appealing
  • Cons: Expensive


What is Color-Changing Filament?

Remember those T-shirts from the 80s, the ones that would change color based on body temperature? Or how about mood rings? Well, this is the same idea, because color-changing 3D printer filaments also change color based on changes in temperature.

More Information

Filaments from this category tend to change between a gradient of two colors, for example from purple to pink, blue to green, or yellow to green.

As with other exotic types of 3D printer filament, color-changing filament exists in blends of both PLA and ABS.

When Should I Use Color-Changing 3D Printer Filament?

With no special physical, tactile, or functional characteristics, this type of 3D printer filament is purely designed for aesthetically-driven applications. Use it whenever you would normally use PLA or ABS, but desire that extra visual flare. Good candidate projects include phone cases, wearables, toys, and containers.

Recap of Color-Changing 3D Printer Filament

  • Pros: Aesthetically pleasing, can be used to detect heat and other environmental elements
  • Cons: Limited mechanical properties


What is Clay/Ceramic Filament?

As evidenced by this article, plastic tends to dominate 3D printing as the primary print material. We’ve explored some other non-plastic options already, and here’s another: clay. Boasting earthenware properties, clay 3D printing filament typically contains a mixture of clay and polymer.

More Information

There are a few different companies offering stone/earthen material-based filaments, with clay (often marketed as ceramic) being the one with perhaps the strongest use case: faux-pottery.

A common characteristic shared between these filaments is brittleness, meaning care is required to properly handle and print them.

Lay Filament’s LAYCeramic is one example of a ceramic filament that achieves near-authentic results. Fireable in a kiln after printing, the polymer binding the ceramic particles within de-binds to leave behind a slightly shrunken, but the hardened, final print can be spruced up with a ceramic glaze and other post-processing effects.

When Should I Use Clay/Ceramic 3D Printer Filament?

When you’re looking for a handmade earthenware look paired to the impossibly precise repeatability 3D printing gives.

Recap of Clay/Ceramic 3D Printer Filament

  • Pros: Provides clay-like properties, can be fired in a kiln
  • Cons: Parts will shrink after post-processing, the filament is expensive


What is Carbon Fiber Filament?

When types of 3D printer filament like PLA, ABS, PETG, and nylon are reinforced with carbon fiber, the result is an extremely stiff and rigid material with relatively little weight. Such compounds shine in structural applications that must withstand a wide variety of end-use applications.

More Information

The trade-off is the increased wear and tear on your printer’s nozzle, especially if it’s made of a soft metal like brass. Even as little as 500 grams of this exotic 3D printer filament will noticeably increase the diameter of a brass nozzle, so unless you enjoy frequently replacing your nozzle, consider using one made of (or coated with) a harder material.

When Should I Use Carbon Fiber 3D Printer Filament?

Thanks to its structural strength and low density, carbon fiber is a fantastic candidate for mechanical components. Looking to replace a part in your model car or plane? Give this 3D printer filament a try.

Recap of Carbon Fiber 3D Printer Filament

  • Pros: Strong and lightweight material, ideal for functional applications
  • Cons: Causes wear and tear on 3D printer nozzle


What is HIPS Filament?

In the commercial world, high impact polystyrene (HIPS) – a copolymer that combines the hardness of polystyrene and the elasticity of rubber – is commonly found in protective packaging and containers, like CD cases.

In the world of 3D printing, HIPS typically plays a different role. 3D printers can’t print onto thin air – that’s where support structures come in. Overhangs require some underlying structure, and this is where HIPS really shines. When paired with ABS in a dual extrusion printer, HIPS acts as an excellent support material.

More Information

For dual extrusion printing with HIPS, simply crank the supports to the max and fill any gaps in your design with HIPS 3D printer filament. Immersing the finished print in limonene will strip away the HIPS leaving your final product behind.

Unfortunately to use HIPS as a support material limits you to printing your actual part from ABS. Other 3D printer filament materials will be damaged by the limonene. Handily, HIPS and ABS print well together in any case, being of similar strength, stiffness, and requiring a comparable print temperature.

In fact, despite its primary use as a support material, HIPS is a decent 3D printer filament in its own right. It is stronger than both PLA and ABS, warps less than ABS, and can easily be glued, sanded, and painted.

When Should I Use HIPS 3D Printer Filament?

Sharing many characteristics with ABS, HIPS 3D printing filament is a good all-rounder for parts that need to stand up to wear and tear or for projects that require a finishing-friendly material to achieve the end look.

Recap of HIPS 3D Printer Filament

  • Pros: Can be used as a support material and strong 3D printer filament
  • Cons: Requires post-processing to remove supports, only compatible with ABS


What is PVA?

Polyvinyl alcohol (PVA) is soluble in water, and that’s exactly what commercial applications take advantage of. Popular uses include packaging for dishwasher detergent “pods” or bags full of fishing bait. (Throw the bag in water and watch it dissolve, releasing the bait.)

More Information

The same principle applies in 3D printing, making PVA a great support material when paired with another 3D printer filament in a dual extrusion 3D printer. The advantage of using PVA over HIPS is that it can be used to support more materials than just ABS.

The trade-off is a 3D printer filament that is slightly more difficult to handle. One must also be careful when storing it, as the moisture in the atmosphere can damage the filament prior to printing. Dry boxes and silica pouches are a must if you plan to keep a spool of PVA usable in the long run.

When Should I Use PVA 3D Printer Filament?

PVA filament is a great choice as a support material on complex prints with overhangs.

Recap of PVA 3D Printer Filament

  • Pros: Terrific support material
  • Cons: Difficult to handle, susceptible to moisture


What is Cleaning Filament?

Unlike the other filaments in this list, cleaning 3D printer filament is not used to print objects, but to clean 3D printer extruders. Its purpose is to remove any material in the hot end that might have been leftover from previous prints. Though a good general practice, using cleaning 3D printer filament is especially useful when transitioning between materials that have different print temperatures or colors.

More Information

The general procedure involves manually feeding cleaning 3D printer filament into a heated print head to force out the old material, then cooling the hot end slightly and yanking the filament back out again. For more detailed instructions, take a look at the manufacturer’s information for the specific filament you’re using.

A few extra things to note:

  • “Print” temperature depends on whatever types of 3D printer filament you used before, as well as on the one you want to use next. (Cleaning 3D printer filament is stable anywhere between 150 and 280°C.)
  • It’s not typically necessary to use more than 10 cm of filament at a time.
  • Other methods of cleaning exist, including the popular “cold pull” technique, which is similar to the above procedure and does not require cleaning 3D printer filament.

When Should I Use Cleaning 3D Printer Filament?

You should consider cleaning 3D printer filament between prints using two materials with wildly different temperature requirements or colors. Generally speaking, it’s important to give your hot end a bit of TLC every once in a while.

Recap of Cleaning 3D Printer Filament

  • Pros: Cleans nozzle when switching between different filaments
  • Cons: Adds time to the printing process, limited usefulness


What is Wax (MOLDLAY) Filament?

Want to print something in real brass, tin, or some other metal? Well, you can! Kind of… In reality you’ll be printing a mold using a wax 3D printer filament. But after a few extra steps, your design really can shine.

More Information

The process is called “lost-wax” or “investment” casting, and it more-or-less works like this:

  1. Create a positive wax mold, i.e. a wax replica of what you want the final metal product to look like.
  2. Dip the mold in plaster and let it dry.
  3. Put the wax-plaster object in an oven. At a high enough temperature, the wax will melt away, leaving a negative space within the plaster, in which the metal product can be cast.

Wax 3D printer filament makes the first step easy, as one would normally have to carve the mold out of pure wax.

Dominating the wax 3D printer filament arena is MOLDLAY by Kai Parthy CC Products. When using this or similar wax-like materials, keep in mind that they are much softer than most types of 3D printer filament. Among other precautions, it may be necessary to modify your extruder and layer your print bed with an adhesive.

When Should I Use Wax (MOLDLAY) 3D Printer Filament?

If you’re casting pieces from metals, wax-like filaments like MOLDLAY could give you greater flexibility with the ability to directly 3D print intricate and complex designs that fit into a lost-wax casting workflow.

Recap of Wax 3D Printer Filament

  • Pros: Create molds with your 3D printer
  • Cons: Requires modifications to extruder and print bed, limited applications


What is ASA Filament?

Sure, ABS is great, but it has its flaws. That’s why plastics manufacturers are always looking for alternatives. One such alternative is acrylonitrile styrene acrylate (ASA), which was originally developed to be a hardy weather-resistant material. Hence it’s primary use in the automotive industry.

More Information

In addition to being a 3D printer filament that is strong, rigid, and relatively easy to print with, ASA is also extremely resistant to chemical exposure, heat, and most importantly, changes in shape and color. Prints made of ABS have a tendency to denature and yellow if left outdoors. Such is not the case with ASA.

Another minor benefit to using ASA over ABS is that it warps less during printing. But be careful with how you adjust your cooling fan; ASA can easily crack if things get a little too windy during printing.

When Should I Use ASA 3D Printer Filament?

For anything from birdhouses to custom garden gnomes and replacement outlet covers, look no further than this 3D printer filament.

Recap of ASA 3D Printer Filament

  • Pros: Great for functional applications, especially automotive parts
  • Cons: Susceptible to cracking during the printing process


What is PP?

Polypropylene (PP) is tough, flexible, light, chemically resistant and food-safe, which might explain it’s broad range of applications, including engineering plastics, food packaging, textiles and bank notes.

More Information

Unfortunately, as a 3D printer filament type, PP is notoriously difficult to print with, often presenting a heavy warp and lackluster layer adhesion. If not for these issues, PP may have contended with PLA and ABS  for most popular 3D printer filament types, given its strong mechanical and chemical properties.

Interestingly, since many household objects are made of PP, it’s actually possible to recycle old junk and turn it into new 3D printer filament.

When Should I Use PP 3D Printer Filament?

If you can wrest PP’s warping under control, then most prints calling for a hardy and light material would suit PP. It’s important to note however that while the material sees great use in the packaging of consumables and medicine for its food-safe properties, the process of FDM 3D printing negates this with hundreds (if not thousands) of layer lines for bacteria to hang out in — best not to try.

Recap of PP 3D Printer Filament

  • Pros: Strong mechanical properties, chemical resistant
  • Cons: Difficult to print with, prone to warping, poor layer adhesion


What is PC-ABS Filament?

Polycarbonate ABS alloy (PC-ABS) is a tough thermoplastic, combining the strength and heat resistance of poly-carbonate with the flexibility of ABS. Commonly found in automotive, electronics, and telecommunications applications, it is one of the most widely used industrial thermoplastics in the world.

More Information

When used as a 3D printer filament, the same benefits apply, but the trade-off is a slightly more complicated printing process. First, because PC-ABS is hygroscopic, it’s recommended to bake it before printing (or, at the very least, store it in a proper environment). Second, it requires a high printing temperature (of at least 260°C). Third, it tends to warp, so a high print bed temperature is also necessary (of at least 100°C, and as high as 140°C).

When Should I Use PC-ABS 3D Printer Filament?

Functional prototyping, tooling and small-batch end-use parts that need to withstand small shocks and impacts are a good fit for PC/ABS.

Recap of PC-ABS 3D Printer Filament

  • Pros: Offers the best qualities of PC and ABS materials
  • Cons: Requires high temperature for nozzle and print bed, susceptible to moisture


What is Acetal (POM) Filament?

Polyoxymethylene (POM), also referred as acetal and Delrin, is well known for its use as an engineering plastic, for example in parts which move or require high precision.

More Information

Acetal as a material sees common use as gears, bearings, camera focusing mechanisms and zippers.

POM performs exceptionally well in these types of applications due to its strength, rigidity, resistance to wear, and most importantly, its low coefficient of friction. It’s thanks to this last property that POM makes such a great 3D printer filament.

For most of the types of 3D printer filament in this list, there is a significant gap between what is made in industry and what you can make at home with your 3D printer. For POM, this gap is somewhat smaller; the slippery nature of this material means prints can be nearly as functional as mass-produced parts.

Make sure to use a heated print bed when printing with POM 3D printer filament, as the first layer doesn’t always want to stick.

When Should I Use Acetal (POM) 3D Printer Filament?

Any moving parts that need to be low friction and tough. We imagine gearing mechanisms in projects using motors (such as RC cars) could be an applicable field for POM.

Recap of Acetal (POM) 3D Printer Filament

  • Pros: Good resistance to chemicals and heat, ideal for functional applications
  • Cons: Difficulty with first layer adhesion, requires high print bed temperature


What is PMMA Filament?

Ever heard of polymethyl methacrylate (PMMA)? Maybe not. What about acrylic, or Plexiglas? That’s right, we’re talking about the same material that’s most often used as a lightweight, shatter-resistant alternative to glass.

More Information

3D printing with PMMA 3D printer filament can be a little difficult. To prevent warping and to maximize clarity, extrusion must be consistent, which requires a high nozzle temperature. It might also help to enclose the print chamber in order to better regulate cooling.

When Should I Use PMMA 3D Printer Filament?

Rigid, impact resistant, and transparent, use this 3D printer filament for anything that should diffuse light, whether that’s a replacement window pane or a colorful toy. Just don’t use it to make anything that should bend, as PMMA is not very flexible.

Recap of PMMA 3D Printer Filament

  • Pros: Rigid, transparent, and resistant to impact
  • Cons: Susceptible to warping, not flexible, requires high print temperature


What is FPE Filament?

Flexible polyester (FPE) is a generic label given to a 3D printer filament that combines rigid and soft polymers. Such filaments are comparable to PLA, but are softer and more flexible. The specific flexibility depends on the hard and soft polymers used, and on the ratio between them.

More Information

Two notable aspects of FPE include good layer-to-layer adhesion and a moderately high resistance to heat and a variety of chemical compounds. Given the wide range of FPE 3D printer filament that is available, perhaps the most useful way to differentiate between the wide range of FPE available is the Shore value (like 85A or 60D), where a higher number indicates less flexibility.

When Should I Use FPE 3D Printer Filament?

When flexibility in the print is desired, but ease of printing takes priority. Flexible filaments can be tricky to print, and FPEs go some way to offering an alternative that offers a little bit of everything. Easy to print, like PLA, but with the greater flexibility in the resulting print.

Recap of FPE 3D Printer Filament

  • Pros: Easy to print, provides flexibility and high strength
  • Cons: Requires high nozzle temperature and low printing speed

















Leave a Reply